Thermodynamically consistent phase field approach to phase transformations with interface stresses

نویسنده

  • Valery I. Levitas
چکیده

Thermodynamically consistent phase field theory for multivariant martensitic transformations is developed with the main focus on introducing correct interface stresses (tension). The nontrivial point is that the interface tension (physical phenomenon) is introduced with the help of some geometric nonlinearities, even when strains are infinitesimal. Total stress at the diffuse interface consists of elastic and dissipative parts which are determined by the solution of the coupled system of phase field and viscoelasticity equations and the introduced interface stresses. An explicit expression for the free energy is derived that results in the desired expression for the interface stresses consistent with the sharp interface for the propagating nonequilibrium interface. Analytical expressions for nonequilibrium interface energy, width, entropy excess, as well as distribution of the interface tension are derived and parametrically studied. Interface stress tensor distribution is also obtained and analyzed for a critical martensitic nucleus. The possibility of extending the developed approach to other phenomena and more general models is discussed. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase field approach to martensitic phase transformations with large strains and interface stresses

Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit, which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp in...

متن کامل

Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses

The main focus of this paper is to introduce, in a thermodynamically consistent manner, an anisotropic interface energy into a phase field theory for phase transformations. Here we use a small strain formulation for simplicity, but we retain some geometric nonlinearities, which are necessary for introducing correct interface stresses. Previous theories have assumed the free energy density (i.e....

متن کامل

Interface- and surface-induced phenomena during phase transformations: phase field approach

Thermodynamically consistent phase fi eld theory for various phase transformations (including multivariant martensitic transformations, melting, and twinning), which includes interface stresses, is developed [1–5]. Free energy includes several local polynomials in terms of the order parameters describing phase transformations and depends on their gradient in the current confi guration. Theory i...

متن کامل

A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for hom...

متن کامل

Multiple twinning and variant-variant transformations in martensite: Phase-field approach

A phase-field theory of transformations between martensitic variants and multiple twinning within martensitic variants is developed for large strains and lattice rotations. It resolves numerous existing problems. The model, which involves just one order parameter for the description of each variant-variant transformation and multiple twinnings within each martensitic variant, allows one to pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013